

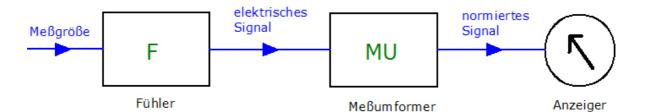
University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	DiplIng. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

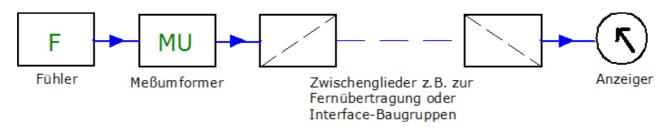
Inhaltsverzeichnis:

1.4	Sensorik	2
1.	.4.1 Messketten	
1.	.4.2 Einheitssignale	3
	1.4.2.1 Stromsignal	5
	1.4.2.2 Spannungssignal	5
	1.4.2.3 Vereinheitlichung des Signalpegels für die Ausfallinformation	7
1.	.4.3 Bürdenwiderstand	13
1.	.4.4 Funktion– und Wirkungsweise eines Messumformers	14
	1.4.4.1 Messfühler	14
	1.4.4.2 Vorteile des Messumformers	15
	1.4.4.3 Zweidraht- und Vierdrahtmessumformer	16
1.	.4.5 Messumformertypen, Einsatzgebiete (engl. Transmitter)	19
1.	.4.6 Stichworte zu Betriebsbedingungen und Forderungen an die Messstelle	21
1.	.4.7 Medieneinfluss auf den Prozessanschluss	24
1.	.4.8 Messumformertypen	26
	1.4.8.1 Durchflussmessumformer	26
	1.4.8.2 Füllstandsmessumformer (Niveaumessumformer)	27
	1.4.8.3 Temperaturmessumformer	28
	1.4.8.4 Analysenmessumformer	
	1.4.8.5 Messumformer für elektrische Größen	30
1	4 9 Selbstüberwachung und Diagnose von Feldgeräten	31

University of Applied Siences


Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

1.4 Sensorik


1.4.1 Messketten

Die Messung elektrischer Größen *ist* vorwiegend eine Instrumentaltechnik. Man unterscheidet Messgeräte mit Zubehör und Messschaltungen. Anzeiger und Schreiber gehören zum Gebiet der Messgeräte, während Messbrücken, Kompensator und Messverstärker zu den Maßschaltungen zählen.

Die elektrische Messtechnik nichtelektrischer Größen schließt eine Umformungsund Übertragungstechnik mit ein. Die zu messende nichtelektrische Größe muss nämlich in eine elektrische Größe abgebildet werden, Dazu benötigt man nicht nur Messgeräte mit ihrem Zubehör, sondern eine Kette messtechnischer Übertragungsglieder. Auf diese Weise entsteht eine *Messkette*, bzw. ein *Messkanal*. Die einfachste Messkette besteht aus drei Übertragungsgliedern. nämlich *Fühler*, *Messumformer* und *Anzeiger*, wie im Bild

Der Fühler dient zur Erfassung und Umwandlung der nichtelektrischen Größe in ein elektrisches Signal, der Messumformer zur Verstärkung und Normierung des Signals. Das normierte Ausgangssignal des Messumformers wird dem elektrischen Anzeiger zugeführt.

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

1.4.2 Einheitssignale

50. Jahrgang atp

Historischer Beitrag aus rtp 1/59

GERÄTETECHNIK

Ein neues elektropneumatisches Regelsystem

Von K. F. FRÜH, Karlsruhe

Mitteilung aus dem Wernerwerk für Meßtechnik der Siemens & Halske AG, Karlsrube

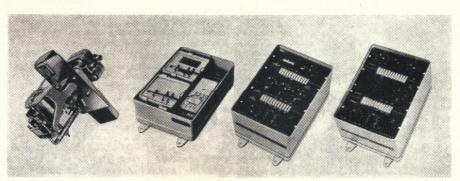
1. Warum elektropneumatisch regeln?

Die vollautomatische Regelung chemischer Prozesse wird mehr und mehr Selbstverständlichkeit. Heute führt der großzügige Ausbau der chemischen Verfahrensindustrie zu Betriebsanlagen riesigen Ausmaßes,

Sollen in derart weitläufigen Anlagen die Überwachungsund Regelgeräte in wenigen, zentralen Meßwarten zusammengefaßt werden, so kann auch in explosionsgefährdeten Räumen oftmals auf den elektrischen Strom zur Übertragung der Signale nicht verzichtet werden. Die Anwendung der Elektrizität beschränkt sich dabei jedoch vorzugsweise auf die Meßseite der Regelkreise, da den schnellen und von Natur aus explosionssicheren pneumatischen Stellgliedern der Vorzug gegeben wird. Für besonders schnelle Regel-strecken, deren Mcggrößen elektrisch in die Warte übertragen werden, wurden auch elektropneumatische Regler entwickelt, die direkt am Stellglied zu montieren sind, so daß keine Verzögerungen durch lange Steuerluftleitungen auftreten können

Durch elektropneumatische Regelungen werden also die Vorteile elektrischer Meßgrößenerfassung und verarbei-tung mit den Vorteilen schneller und explosionssicherer pneumatischer Stellglieder verbunden.

2. Das TELEPERM-TELEPNEU-Regelsystem


Die Regelsysteme Teleperm und Teleper wurden so aufgebaut, daß ihre Geräte wahlweise miteinander verbunden werden können

Die elektrischen Einheitsgeräte des Teleperm-Systems (Bild 1) sind mit magnetischen Verstärkern ausgerüstet, wodurch größte Betriebssicherheit erreicht wird. Durch Meßumformer werden die verschiedenen Betriebsgrößen in eingeprägte Gleichströme (einheitlich 0 bis 50 mA) umgewandelt, die dem Reglereingang zugeführt werden. Der TELEPERM-Regler S ist ein stetig arbeitender PJ-Regler, dessen magnetische Endstufe jedoch aus zwei bistabilen Kippverstärkern besteht; die Ausgangsimpulse der Kippverstärker schalten den Umkehrmotor des Stellantriebes Ein PJD-Regler mit kontinuierlichem Ausgang ist der Teleperm-Regler K. Der eingeprägte Ausgangsstrom im Bereich von 50 mA wird zur Steuerung des elektropneumatischen Stellwerkes an einem pneumatischen Stellglied benutzt.

Auch in der Pneumatik ist größte Betriebssicherheit oberstes Gesetz. Deshalb liegt allen Einheitsgeräten des Tellepneu-Systems (Bild 2) das Prinzip des Kraftver-gleichs zugrunde. Vom Ausgang des McBumformers bis zum Stellglied arbeiten sämtliche Geräte in dem genorm-ten Druckbereich von 0,2 bis 1,0 kp/cm². Durch Verwen-dung gleicher Bausteine in den verschiedenen Geräten wurde die Verwirklichung eines Baukastensystems ange-

3. Bindeglieder zwischen Elektrik und Pneumatik

Das kennzeichnende Bauteil für die pneumatischen Kraftvergleichsgeräte ist die pneumatische Kraftwaage. Ist- und Sollwertdruck der Regelgröße wirken auf Metallfalten-

Temperatur-Meßumformer Bild 1. Ausschnitt aus der Reihe der Teleperm-Geräte.

Regler K

54

atp 8.2008 www.atp-online.de

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

Im rtp-Text von 1959 heißt es:

Die elektrischen Einheitsgeräte des TELEPERM-Systems (Bild 1) sind magnetischen Verstärkern ausgerüstet, wodurch größte Betriebssicherheit erreicht wird. Durch Meßumformer werden die verschiedenen Betriebsgrößen in eingeprägte Gleichströme (einheitlich 0 bis 50 mA) umgewandelt, die dem Reglereingang zugeführt werden. Der TELEPERM-Regler S ist ein stetig arbeitender PJ-Regler, dessen magnetische Endstufe jedoch aus bistabile Kippverstärkern besteht die Ausgangsimpulse der Kippverstärker Umkehrmotor Stellantriebes. schalten den des Ein PJD-Regler mit Der kontinuierlichem Ausgang ist der TELEPERM-Regler Κ. eingeprägte Ausgangsstrom im Bereich von 50 mA wird zur Steuerung elektropneumatischen Stellwerkes an einem pneumatischen Stellglied benutzt.

Auch in der Pneumatik ist größte Betriebssicherheit oberstes Gesetz. Deshalb liegt allen Einheitsgeräten des TELEPERM-Systems (Bild 2) das Prinzip des Kraftvergleichs zugrunde. Vom Ausgang des Meßumformers bis zum Stellglied arbeiten sämtliche Geräte in dem genormten Druckbereich von 0,2 bis 1,0 kp/cm ². Durch . Verwendung gleicher Bausteine in den verschiedenen Geräten wurde die Verwirklichung eines Baukastensystems angestrebt.

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	DiplIng. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

In vielen Mess-, Steuer- und Signalsystemen arbeitet man mit einem Einheitssignal, Geräte mit Einheitssignal haben für das Eingangssignal und für das Ausgangssignal die Auswahl zwischen einigen genormten Signalspannen.

1.4.2.1 Stromsignal

Für die Fernübertragung mit unbestimmten oder zeitlich veränderlichem Widerstand der Übertragungsleitung ist unter Berücksichtigung der gegebenen technischen Voraussetzungen nur das Stromsignal geeignet. Soll das Stromsignal mehreren Empfängern zugeführt werden, so bedingt das eine Reihenschaltung ihrer Eingänge. Schwierigkeiten können sich ergeben:

- wenn ein Stromsignal mehreren Empfängern mit nicht potentialfreien Eingängen zugeführt werden muss.
- wenn mehrere Stromsignale einem Empfänger mit nicht potentialfreien Eingängen zugeführt werden müssen.
- wenn die Hilfsenergie ohne galvanische Trennung aus einer gemeinsamen Gleich spannungsquelle (z. B. Zentralbatterie) entnommen werden soll.

Von Nachteil ist:

- die Abtrennung eines Einganges unterbricht alle im gleichen Kreis liegenden Eingänge, falls keine zusätzlichen Schutzmaßnahmen getroffen werden,
- die Reihenschaltung der Eingänge kann zu höherer Empfindlichkeit gegenüber Störspannungen führen.

1.4.2.2 Spannungssignal

Soll das Spannungssignal mehreren Empfängern zugeführt werden, so bedingt das eine Parallelschaltung ihrer Eingänge.

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

Die freizügige Verknüpfung von Eingängen und Ausgängen ist gegeben, wenn alle Signalund Versorgungsspannungen sich auf ein gemeinsames Bezugspotential (Bezugsleiter, Nullschiene, "signal common") beziehen.

Schwierigkeiten können sich ergeben:

- wenn der Bezugsleiter zu schwach dimensioniert oder unzweckmäßig verlegt ist, so dass die Spannungsabfälle längs dieses Leiters nicht mehr zu vernachlässigen sind.

Von Nachteil ist:

- dass ein Kurzschluss an einem Eingang sich auf alle parallel geschalteten auswirkt.

In Deutschland sind genormt:

Stromsignale 0 - 20 mA

4 - 20 mA <-- Life Zero Signal

Spannungssignale 0 - 10 V

2 - 10 V <-- Life Zero Signal

Pneumatisches Signal 0,2 - 1bar <-- Life Zero Signal*

Life Zero Signal bedeutet lebendiger Nullpunkt! Dies hat zwei Vorteile, wobei das pneumatische Einheitssignal differenziert zu betrachten ist:

- a) Drahtbruchüberwachung
- b) Energieversorgung der sogenannten Zweidrahtmessumformer

Damit wird die Anpassung der einzelnen Geräte aneinander einfach. Je nach den betrieblichen Anforderungen können Geräte verschiedener Erzeugerfirmen zusammengeschaltet werden.

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

Es kann durch den ganzen Regelkreis das gleiche Einheitssignal verwendet werden, es kann aber auch vorkommen, dass von einer Temperaturmessung ein elektrisches Einheitssignal an den Regler gelangt, aber ein pneumatisches Signal für das Ventil verlangt wird.

Die Einheitssignale 0,2 – 1 bar und 4 – 20 mA haben einen <u>"Life Zero"</u>, einen lebendigen <u>Nullpunkt</u> Bei pneumatischen **Geräten ist** er gerätebedingt. Bei einer kleinen Änderung der Eingangsgröße im Anfangsbereich würde das Gerät ungenau und schwerfällig arbeiten. Bei dem elektrischen Signal 4 – 20 mA benutzt *man* die Spanne 0 – 3 mA zur Energieversorgung der Geräte. Damit spart man gesonderte Leitungen.

Als weiteren Grund für einen "Life Zero" kann das Erkennen eines Leitungsdefektes oder Bruches der Singrettung bewertet werden.

1.4.2.3 Vereinheitlichung des Signalpegels für die Ausfallinformation

Zusätzliche Informationen außerhalb der eigentlichen Messinformation, z. B. zum Gerätestatus, sind heute durch den Einsatz von Mikroprozessoren bei Feldgeräten schon weit verbreitet. Bei den Mindestinformationsinhalten von Sensorsystemen in der Prozessnahen Technik wurde die Geräteausfallinformation A als unverzichtbarer Bestandteil der Statussignale eines Sensorsystems definiert.

Die Verwendung der Ausfallinformation A von digitalen Messumformern mit analogem Ausgangssignal liefert für die Prozessleittechnik zwei wesentliche Vorteile: Fehler im Messsystem werden durch A frühzeitig signalisiert, so dass in informationsweiterverarbeitenden Systemen die Auswirkungen mittels Ausfallstrategien begrenzt werden können.

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

Die Ausfallinformation kann somit innerhalb von QS-Strategien einen erheblichen Beitrag zur Fehlervermeidung liefern. Mit Hilfe von A lassen sich aber auch Instandhaltungsstrategien realisieren mit dem Ziel, die Produktivität der EMSR-Instandhaltung zu steigern. Beispiele hierfür sind in der Prozessanalysenmesstechnik, aber auch bei sicherheitstechnisch relevanten Messungen zu finden.

In den zur Zeit käuflichen digitalen Messumformern sind für die Ausfallinformation im wesentlichen vier Möglichkeiten für die Weitergabe realisiert.

- Die Ausfallinformation ist Bestandteil des digitalen Kommunikationssignals. Dies wird zurzeit nur bei digitalen Messumformern mit digitalem Ausgangssignal realisiert. Eine merkliche Nutzung kann erst bei Einführung eines Feldbusses erfolgen.
- Die Ausfallinformation ist Teil eines digital kodierten Informationsflusses bei kommunikationsfähigen Messumformern (Smart-Messumformer). Zur Erfassung aller Zusatzinformationen sind üblicherweise herstellerspezifische Handterminals nötig.
 A steht, sofern keine herstellerspezifische Kopplung mit einem PLS realisiert ist, nur über das Handterminal zur Verfügung.
- Die Ausfallinformation wird mit einem Binärsignal realisiert. die Nutzung der Ausfallinformation erfordert hierbei eine zusätzliche Signalleitung.
- Die Ausfallinformation ist als Stromsignal, jedoch außerhalb des 4–20 mA-Messsignalpegels realisiert. Üblicherweise haben unterschiedliche Geräte-Hersteller für die Ausfallinformation unterschiedliche Signalpegel festgelegt, so dass keine einheitliche Signalverarbeitung in Prozessleitsystemen möglich ist.

Vereinheitlichung des Signalpegels bei Digitalen Messumformern

Zur Definition der zulässigen Strombereiche für das Ausfallsignal im Stromausgang eines Messumformers muss zunächst die für das Messsignal zur Verfügung stehende Ausgangsspanne präziser definiert werden.

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	DiplIng. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

Für Justierzwecke bzw. um den Messbereichsüberlauf sicher zu erkennen, wird der für das Messsignal (M) zur Verfügung stehende Strombereich über das Einheitssignal von 4 und 20 mA hinaus auf die folgenden Grenzen erweitert:

3,8 mA < c_M < 20,5 mA c_M = Stromsignal für die Messinformation M

Ausgangsströme von Messumformern außerhalb dieser Grenzen dürfen nicht mehr als Messsignal interpretiert werden.

Damit erhält man freie Strombereiche, die vom Ausfallsignal zugewiesen werden können. Ein nicht (mehr) vorhandenes Feldgerät, Leitungsbruch und Wegfall der Hilfsenergie ergibt für **A** immer ein Stromsignal von 0.

 $C_A = 0$ mA $C_A = Stromsignal für die Ausfallinformation A$

Andere Störursachen, die gleichfalls zu einem Geräteausfall führen, bedingen jedoch nicht notwendigerweise den gleichen Signalausgang. Daher erscheint es sinnvoll für **A** Stromwerte ungleich Null zu wählen. Es verbietet sich ein unmittelbarer Anschluss an den Messbereichsanfang, da Signale immer fehlerbehaftet sind. Legt man als Signalabstand 0,2 mA fest, so gilt für die Ausfallinformation **B**:

 $C_A \leq 3,6 \text{ mA}$

Der konkrete Signalstrom für **A** sollte außerdem noch um einen Sicherheitszuschlag vermindert werden, der vom üblichen Fehler des Feldgerätes entspricht. Für Gerätetypen bzw. –serien ist dieser Fehler vom Gerätehersteller zu ermitteln, so dass schließlich bei einem digitalen Messumformer die folgende Bedingung für **C**_A einzuhalten ist:

 $C_A \leq 3,6 \text{ mA} - \epsilon \text{ FD}$

ε FD = obere Grenze des Signalfehlers für ein Feldgerät (typ−, serienspezifisch) in mA.

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

Bei Feldgeräten in 4-Leiter-Technik ist ein Ausfallsignalpegel $CA \leq 3,6$ mA problemlos realisierbar und daher vorzuziehen.

Falls bei Feldgeräten in 2-Leiter-Technik Leistungsprobleme auftreten, wurde ein zweiter Bereich für das Ausfallsignal mit

 $CA \ge 21,0 \text{ mA}$

festgelegt.

Ein Feldgerät muss mindestens einen dieser beiden Strombereiche für A besitzen. Wünschenswert und für manche Ausfallstrategien sogar notwendig, ist das Vorhandensein beider Strombereiche für A. Unabdingbar wird dann die wahlweise Einstellbarkeit.

Signalerkennung bei Prozessleitsystemen

Leitsysteme müssen in den Analog-Eingangsbaugruppen das Ausfallsignal sicher erkennen können. Damit ist ein auswertbarer Strombereich von wenigstens 0 bis 22 mA nötig. Weiterhin ist ein vorkonfektionierter Softwareblock für die Auswertung nötig, der den Strom i sicher als Ausfallsignal A oder als Messsignal M interpretiert. Hierzu ist es nötig, auch im Leitsystem den Strombereich der Messinformation M neu festzulegen. Wie beim Feldgerät gilt:

 $3,8 \text{ mA} < C_M < 20,5 \text{ mA}$

Auch bei Leitsystemen sind Fehler in der Signalerkennung nicht zu vermeiden; 0,2 mA erscheinen auch hier für den Signalabstand ausreichend. Damit lassen sich wiederum die Strombereichsgrenzen für die Ausfallsignalerkennung im Leitsystem definieren:

 $0 \le C_A \le 3,6$ mA für den unteren Strombereich und

 $C_A \geq 21$ mA für den oberen Strombereich.

RFH_AUT_Feldger_Indust_Komm_Grundlagen_1_4_07012018.doc

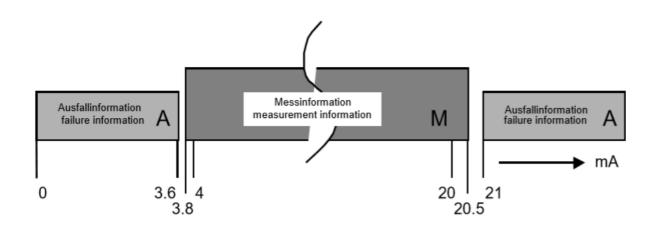
University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

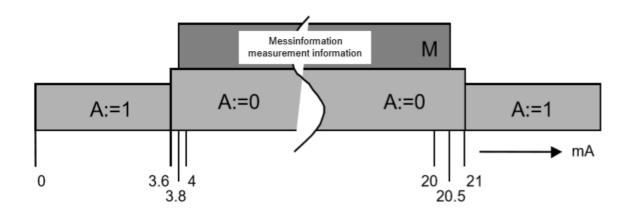
Der größere Signalabstand von 0,5 mA am Messbereichsende erleichtert die Signaldiskriminierung und ist gerätetechnisch einfacher zu realisieren. Stromwerte zwischen 3,6 und 3,8 mA sowie zwischen 20,5 und 21 mA können aufgrund der gemachten Festlegungen im System "Digitaler Messumformer/Prozessleitsystem" nicht vorkommen. Treten sie dennoch auf, so ist deren Interpretation als Messsignal in einer Prozessführung mit Geräteausfallstrategien weniger schädlich als eine fälschliche Zuordnung zu B. Wie schon eingangs erwähnt, gelte diese Festlegungen nicht nur für Prozessleitsysteme, sondern für alle informationsweiterverarbeitenden Systeme.

Dynamik der Signalerkennung

Auch kurzzeitige Einbrüche/Übersteuerungen im Einheitsstromsignal könnten fälschlicherweise als Ausfallsignal interpretiert werden. Daher ist es wichtig, auch Aussagen hinsichtlich der Dynamik der Signalerkennung für A festzulegen.


Im PLS soll das Ausfallsignal erst dann als solches erkannt werden, wenn es mindestens 4 Sekunden und mindestens 2 Signalabtastzyklen angestanden ist.

Eine zusammenfassende Darstellung für die Strombereiche der Mess- und der Ausfallinformation liefert die folgende grafische Darstellung.

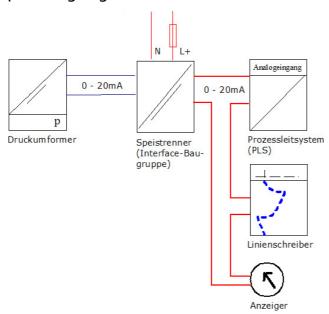


University of Applied Siences

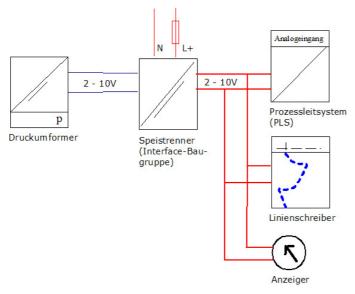
Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	DiplIng. (FH) M. Trier
Flektrotechnik (RFII)	Grundlagen 1 4	07. Januar 2018

Strombereiche für die Signalpegel von Digitalen Messumformern

Strombereiche für die Signalerkennung bei Prozessleitsystemen



University of Applied Siences


Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

1.4.3 Bürdenwiderstand

Der Bürdenwiderstand ist eine wichtige Kenngröße für die Verschaltung von Messkettengliedern. Wird diese Grenzwertangabe nicht beachtet, kann es zur Beeinflussung des Messsignals kommen. Soll heißen, dass das Strom- oder Spannungssignal einbrechen können.

Reihenschaltung für Stromsignale

Parallelschaltung für Spannungssignale

Im Datenblatt des Messumformers, oder der analogen Ausgangskarte eines Prozessleitsystems (PLS), oder einer Speicherprogrammierbaren Steuerung (SPS) findet man diese Widerstandsangabe.

Reihenschaltung: Die Addition der Einzelwiderstände ergibt den Gesamtwiderstand der Schaltung!

Anders ausgedrückt, die Belastung des Messumformerausgangs darf durch die Reihenschaltung der nachgeschalteten Messkettenglieder <u>nicht überschritten</u> werden. Ein typischer Wert für die Bürde eines Stromausganges ist beispielsweise 3500hm.

Parallelschaltung: Der kleinste Widerstand in einer Parallelschaltung bestimmt den Gesamtwiderstand!

Anders ausgedrückt, der typische Bürdenwiderstandswert für einen Spannungsausgang von ca. 20.0000hm darf nicht unterschritten werden!

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

1.4.4 Funktion- und Wirkungsweise eines Messumformers

1.4.4.1 Messfühler

Der Messfühler entnimmt dem physikalischen Raum die Messgröße und bildet sie in ein elektrisches Signal ab. Dieses Signal kann in Form verschiedener elektrischer Größen vorliegen:

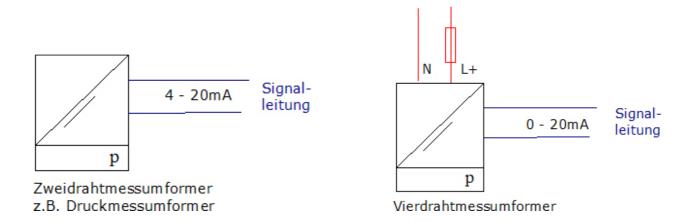
- > Das Thermoelement arbeitet als Temperaturfühler und bildet eine zu messende Temperaturdifferenz als elektrische Spannung ab.
- > Dehnungsmessstreifen wandeln die Dehnung von Werkstücken In eine elektrische Widerstandsänderung um,
- > *Der* in einer Quarzdruckdose enthaltene Piezokristall verwandelt eine mechanische Kraft in eine elektrische Ladung.
- Eine Ionisationskammer liefert als Folge des Neutronenflusses eine elektrische Stromstärke.
- ➤ Beim induktiven Längenmessfühler bewirkt eine Verschiebung des Eisenkerns eine Induktivitätsänderung,
- ➤ Beim kapazitiven Höhenstandsmesser, entspricht eine Änderung des Höhenstandes einer Kapazitätsänderung,

In der elektrischen Messtechnik <u>nichtelektrischer Größen</u> wandelt der Fühler immer eine physikalische Messgröße <u>in ein elektrisches Signal</u> um.

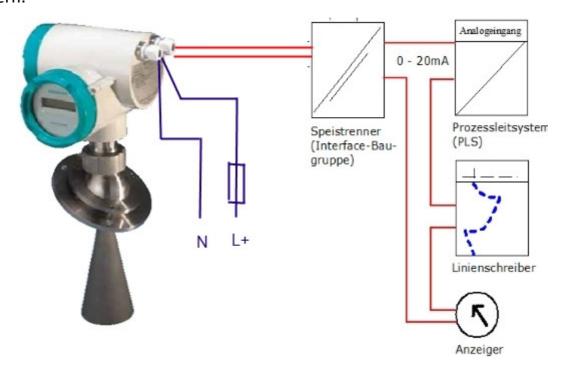
University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

1.4.4.2 Vorteile des Messumformers


Die Einschaltung eines Maßumformers in den Messkanal bedeutet zunächst einen zusätzlichen Aufwand. Bei großen und stark verzweigten Anlagen werden aber verschiedene Vorteile erzielt:

- Für die Kombination von Messen, Steuern, Regeln und Warnen wird nur ein Fühler benötigt, da die Signalleitungen zu den Übertragungsgliedern nach dem Messumformer verzweigt werden können.
- Da der Messumformer zugleich als Signalverstärker wirkt, kann der Verstärkungsaufwand in den nachgeschalteten Reglern, Steuergeräten und Alarrneinrichtungen entsprechend kleiner gewählt werden,
- Summen und Differenzen verschiedener Mel3gröl3en können besonders genau und einfach gebildet werden, da die Messumformer eingeprägte Ausgangssignale liefern,
- Besonders groß ist die Einsparung bei der Lagerhaltung von Ersatzgeräten, da alle nachgeschalteten Gerate für den gleichen normierten Ausgangsstrom der Mel3umformer ausgeführt sind,
- Etwa notwendige Justierarbeiten, z. B. Änderungen von Messbereichen, beschränken sich auf den Messumformer, alte nachfolgenden Geräte bleiben davon unberührt.


Bei kleinen Anlagen mit weniger als 20 Betriebsvariablen werden die zusätzlichen Anschaffungskosten für Messumformer nicht immer durch zusätzliche Vorteile aufgewogen.

1.4.4.3 Zweidraht- und Vierdrahtmessumformer

Die Bezeichnung leitet sich aus der Anzahl der zum Betrieb notwendigen Adern ab. Zweidrahtmessumformer erhalten ihre Energieversorgung über ein Speisegerät und aus den < 4mA des Messsignals. Wird mehr Energie im Feld benötigt, beispielsweise für eine Radarniveaumessung, so muss der Messumformer über separate Adern mit Hilfsenergie versorgt werden. In diesen Fällen spricht man von Vierdrahtmessumformern.

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	DiplIng. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

Vorteile - Attraktive Zweileitertechnik

Attraktives Ex-ia Zweileiter-Gerätekonzept senkt die Kosten

Das attraktive Ex-ia Zweileiter-Gerätekonzept ermöglicht hohe Betriebssicherheit durch Eigensicherheit und senkt die Kosten bei Installation und Integration.

Bei der Neuinstallation von Durchflussmessstellen zum Beispiel reduzieren sich die Kosten um 600 -1000 Euro pro Messstelle im Vergleich zu bisherigen Vierleiter-Instrumentierung. Diese Einsparung entsteht gegenüber herkömmlicher Vierleiter-Instrumentierung durch den Wegfall

- der zusätzlichen Versorgungsleitung,
- der Leitungsschutzschalter
- und sonstiger Komponenten wie Ex-Trenner usw.

Das einheitliche Ex-ia Konzept senkt die Kosten und ermöglicht höchste Sicherheit im Anlagenbetrieb.

Endress+Hauser 3

Erweiterung des Ex-ia Zweileiter-Geräteportfolios

Sichere Sensortechnologien für Durchfluss, Füllstand, Druck, Temperatur und Analyse

Erweitert durch das neue Zweileiter -Gerätekonzept für Durchfluss und Füllstand

Eigensicherheit bietet attraktive Vorteile:

- Durchgängiges Ex-ia Konzept mit zweifacher Fehlersicherheit
- Kostengünstige und qualitativ hochwertiger Explosionsschutz
- Zeitsparende Betriebsprüfungen nach BetrSichV
- Einfache und sichere Wartung / Instandhaltung / Instandsetzung / Geräteaustausch während des Betriebs ohne Feuerschein möglich
- Flexibler Einsatz mit globalen Zertifikaten
- Sichere Instandhaltung und kostengünstige Ersatzteillagerhaltung

Endress+Hauser 🖾

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

Promass 200 – Zweileiter Coriolis Durchflussmessung

Nennweiten: DN 8...50 (80)

Prozesstemperatur: -40...+200°C

Prozessdruck: bis PN 100Messabweichung 0,1% v.MW

Messrohre: Edelstahl, Alloy C22

Attraktive Zweileiter-Technik

- Einfache Integration
- Geringe Installationskosten
- Einfache Inbetriebnahme
- Nutzung der vorhandenen Infrastruktur und Installationspraxis
- Eigensicherheit

Vierleiterperformance!

 Breitbandig einsetzbar für alle Gase und Flüssigkeiten

Erfüllung der Industrieanforderungen

- NAMUR-Einbaulängen (NE 132)
- Diagnose nach NE 107
- Interoperabilität nach NE 105

Bewährte Coriolis Durchflussmessung in effizienter Zweileiter-Technik erfüllt alle Anforderungen der chemischen Industrie – erhöht die Sicherheit und senkt die Kosten!

Endress+Hauser 4

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

1.4.5 Messumformertypen, Einsatzgebiete

(engl. Transmitter)

Typ zur Erfassung der physikalischen Größe

Druckmessumformer Druck (Differenz, absolut, relativ)

Temperaturmessumformer Temperatur

Niveaumessumformer Volumen, Füllstand

Durchflussmessumformer Menge, Masse

Frequenzmessumformer Frequenz

Leistungsmessumformer Elektrische Leistung (Blind, Wirk, Schein)

O₂-Messumformer Sauerstoffgehalt

pH-Messumformer "Wasserstoffgewicht" (pondus Hydrogenii)

Messumformer für Messbrücken Widerstand, Dehnungsmessstreifen

Wegmessumformer Strecke, Weg

Winkelmessumformer Winkel

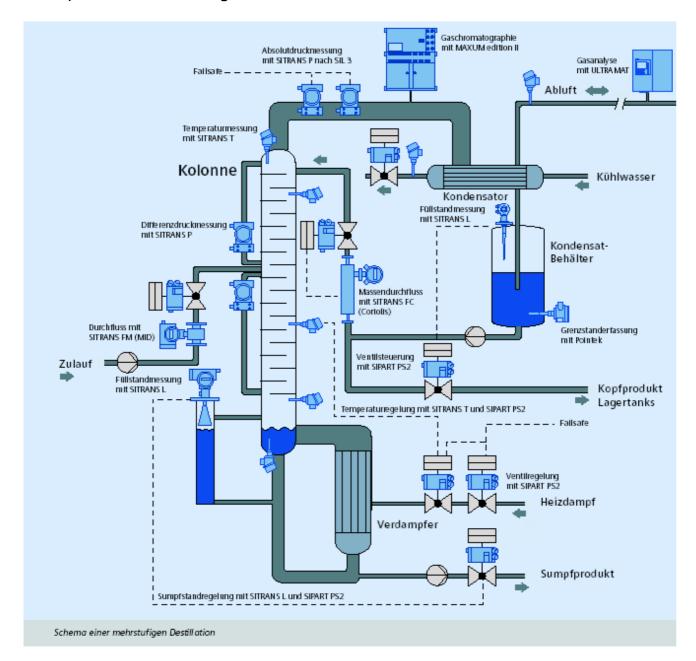
Feuchtemessumformer Feuchte (relativ, absolut)

Leistungsfaktormessumformer Leistungsfaktor

Windstärkemessumformer Windstärke, Windgeschwindigkeit

Strahlungsmessumformer Helligkeit
Trübungsmessumformer Trübung
Viskositätsmessumformer Viskosität

etc.



University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

Beispiel einer mehrstufigen Destillation:

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	DiplIng. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

1.4.6 Stichworte zu Betriebsbedingungen und Forderungen an die Messstelle

Wird eine Messstelle geplant, so ergibt sich deren Notwendigkeit aus dem gewünschten Messeffekt. Das Messgerät soll also entweder selbst etwas aussagen (z. B. örtliche Anzeige) oder eine Funktion unterstützen (z. B. als Istwertgeber für einen Regler). Der Planer beginnt seine Recherchen für die Geräteauswahl bei den Betriebsbedingungen. Er stellt die Fragen nach dem Messstoff, nach den örtlichen Gegebenheiten und stellt die Forderung nach der Darstellung des Messwertes. Dazu nachstehende Stichwortzusammenstellung:

Beschaffenheit des Messstoffes:

- > Gas, Dampf: trocken, feucht
- > Flüssigkeit: Gasanteil, Feststoffe, ablagernde kristallisierende Inhaltsstoffe, Staub im Gas
- Dichte
- > Temperatur, Temperaturänderung, zeitlicher Ablauf
- ➤ Viskosität
- elektrische Leitfähigkeit des Messstoffes, der Ablagerung
- > chemische Aggressivität, Werkstoffauswahl
- Abriebgefahr

Betriebsbedingungen:

- > Verlauf der Rohrleitungen z.B. für Schwebekörperdurchflussmesser
- Nennweite der Rohrleitung
- Ausbildung des Gerinnes, Gefälle, Rückstau
- Druckstufe
- Durchfluss, kleinster, größter Wert; Änderungsgeschwindigkeit (stoßförmige Änderung)

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	DiplIng. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

- > Strömungsverhältnisse: lineare, turbulente Strömung Geschwindigkeitsverteilung, Drall, Pulsation
- ➤ beide Fließrichtungen (Vor-, Rücklauf)
- > statischer Druck, Druckstoß, Druckverlust zulässig
- ➤ Nahrungsmittelindustrie → Keine Toträume in der Rohrleitung und in den Sensoren und Aktoren

Örtliche Gegebenheiten:

- > Umgebungstemperatur
- > Feuchtigkeitseinfluss, Schutzart
- Staubeinwirkung, Schutzart
- Vibration
- Leitungsbeschaffenheit vor und hinter der Messstelle
- > Explosionsschutz
- > Hilfsenergie, Leitungsführung
- Einstreuung elektrischer Störungen
- Befestigungsmöglichkeit

Eingefrorener Stellantrieb (Laterne) eines Regelventils. Durch die Entlüftung wurde ständig feuchte Luft (dampfbelastete Atmosphäre) ins innere transportiert, die dann auskondensiert ist und zum Versagen durch Eisbildung im Winter führte.

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	DiplIng. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

Darstellung des Messwertes:

- > Genauigkeit
- > fester, einstellbarer Messbereich intern, extern
- > interne, externe Kontrollmöglichkeit
- > örtliche Anzeige
- > Zählung, Integration
- Grenzwertsignal
- > analoges Einheitssignal, welche Werte?
- > Impulsausgang zur Fernzählung
- > Schnittstelle, welche?
- PROFIBUS
- > HART-Protokoll
- > Explosions schutz
- > Eichfähigkeit

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	DiplIng. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

1.4.7 Medieneinfluss auf den Prozessanschluss

In diesem Beispiel kann man den Einfluss des Mediums "Hydrochinon" auf den Prozessanschluss sehen. Gemäß den vorliegenden Erfahrungen mit dem Medium und dessen Eigenschaften, wurde das Material für den Prozessanschluss mit Tantal spezifiziert. Statt in Tantal wurde der Prozessanschluss des Druckmessumformers versehentlich in Edelstahl geliefert. Binnen weniger Wochen war die Membran des Druckaufnehmers komplett aufgelöst.

3405.03

Druckmessumformer mit Tubus

Nachher

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	DiplIng. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

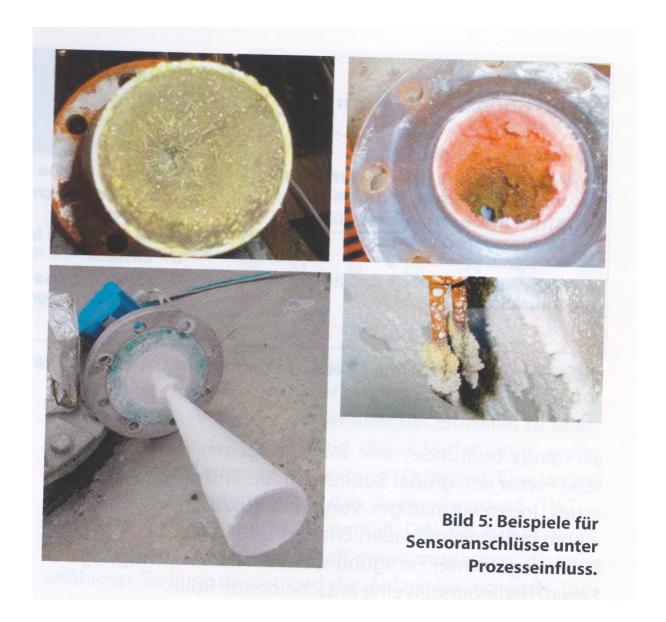


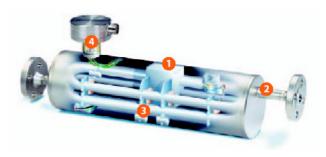
Bild oben links: Ablagerungen an der Membran eines Druckmessumformers mit

vorgelagerter Membran (Tubus).

Bild oben rechts: Ablagerungen in einer Durchflussmesseinrichtung

Bild unten links: Ablagerungen auf einer Hornatenne einer Radarniveaumessung

Bild unten rechts: Ablagerungen an einer Stimmgabelsonde


University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

1.4.8 Messumformertypen

1.4.8.1 Durchflussmessumformer

Massedurchflussmessumformer MDM

Magnetisch, induktiver Durchflussmess-Umformer MID

Druckmessumformer

Druck

Über-/ Unterdruck- bzw. Differenzdruck

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

1.4.8.2 Füllstandsmessumformer (Niveaumessumformer)

Radarmessung

Grenzstandmessung

Lotsystem (Schüttgüter)

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

1.4.8.3 Temperaturmessumformer

Kopftransmitter

Wth, Thermoelement

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	DiplIng. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

1.4.8.4 Analysenmessumformer

Sauerstoffgehalt

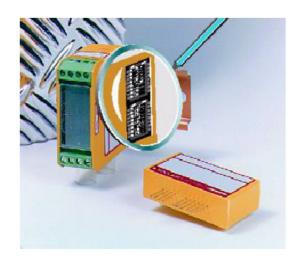
Leitfähigkeit

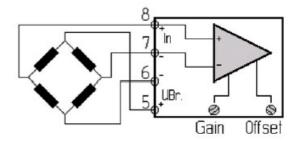
pH-Wert

Feuchte

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	DiplIng. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018


1.4.8.5 Messumformer für elektrische Größen



Leistungsfaktor, Phasenwinkel

Frequenz

Widerstandsmessbrücken

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

1.4.9 Selbstüberwachung und Diagnose von Feldgeräten

NE107

Die Diagnose von Apparaten und Feldgeräten nimmt einen immer größeren Raum in der Instandhaltung ein. Mit dieser Empfehlung legt die NAMUR die Vorstellungen der Anwender zur Darstellung der Diagnoseresultate unter Verwendung von Statussignalen sowie die Vorstellungen zur weiteren Entwicklungsmöglichkeiten der Diagnose in Feldgeräten vor.

Gewünschter Nutzen von Selbstüberwachung

Mit Hilfe von Selbstüberwachung können Feldgeräte Informationen über ihren Zustand liefern. Sie dient primär dazu, den Messwert des Sensors und die Funktionsfähigkeit des Aktors zu plausibilisieren und negative Einflüsse auf die Produktqualität oder gar Anlagenstillstände durch Ausfall von Feldinstrumentierung zu vermeiden. Wenn die Bestimmung des Abnutzungsvorrats eines Gerätes möglich ist, kann diese Information sinnvoll bei der Planung von Anlagenabstellungen verwendet werden. Darüber hinaus ist es möglich, Teile der Instandhaltung von der geplanten (nach einer festgelegten (Nutzungs-) Zeit durchzuführenden) in die zustandsorientierte (die Überwachung der Arbeitsweise nutzende) Instandhaltung zu verschieben.

Arten der Diagnose von Feldgeräten

Bei der Diagnose von Fehlfunktionen, die in Feldgeräten auftreten können, ist prinzipiell zu unterscheiden zwischen:

- Diagnose im Gerät selbst mit Hilfe der Selbstüberwachung: nur diese ist Gegenstand der vorliegenden Empfehlung.
- Diagnose des Feldgeräts unter Zuhilfenahme von Informationen anderer Feldgeräte, der übergreifenden Überwachung.

RFH_AUT_Feldger_Indust_Komm_Grundlagen_1_4_07012018.doc

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	DiplIng. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

Diese ist nicht Gegenstand dieser Empfehlung. Beispiele für die Selbstüberwachung sind eine Selbstüberprüfung der Elektronik oder die Feststellung der Stromstärke durch die Spulen eines MID. Die übergreifende Überwachung erkennt beispielsweise die konstante Minimal-Füllstandanzeige infolge undichter Schwimmer- oder Verdrängerkörper als nicht plausibel, da andere Feldgeräte einen Netto-Zu- oder Abfluss melden.

Fehlerquellen

Fehler können beispielsweise auftreten:

- · in der Elektronik · am Sensor- oder Aktorelement
- an mechanischen Bauteilen beim Einbau bei der Inbetriebnahme
- · bei der Wartung
- · durch Nichteinhalten der spezifizierten Betriebsbedingungen
- beim Prozessanschluss
- · bei der Hilfsenergie

Der Anwender kann Hinweise erhalten zum Ende eines Nutzungsvorrates.

Es ist zu berücksichtigen, dass es keine einheitliche Nomenklatur bei der Fehlerbezeichnung gibt. Angaben zu Fehlerquellen und -häufigkeiten finden sich in [4]. Es ist anzumerken, dass die Selbstüberwachung prinzipiell nicht alle möglichen Fehler detektieren kann. Viele unterschiedliche Fehler können zu denselben Auswirkungen im Messsignal führen, so dass zwar eine Fehlererkennung vorstellbar ist, eine eindeutige Diagnose hingegen nicht. Beispielsweise kann sich die Ansprechzeit eines Berührungsthermometers aufgrund unterschiedlichster Fehler am Schutzrohr ändern.

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

Überblick über die Selbstüberwachung von Feldgeräten

In der Literatur werden verschiedene Möglichkeiten der Selbstüberwachung aufgeführt [7]. Diese können unterteilt werden, wie in Tabelle 1 dargestellt ist. Gleichzeitig werden Vor- und Nachteile der entsprechenden Verfahren sowie Beispiele genannt.

Tabelle 1 Vor- und Nachteile verschiedener Überwachungsmethoden

Nr.	Überwachungs- methode	Vor- und Nachteile	Beispiel
1	Test der Signalver- arbeitung	einfache Methode, gängiges Ver- fahren, aber Sensorelement ist nicht einbezogen	Prüfung der Verbindung zwischen A/D-Wandler und Mikroprozessor durch Schreiben und Rücklesen
2	Umschalten auf Referenz der Messgröße	Sensorelement ist einbezogen, aber Unterbrechung der Messung nur in Spezialfällen möglich	Referenzimpuls wird bei radiometrischer Stand- messung auf Szintillator gegeben [4]
3	Überlagerung eines Referenzsignals	Sensorelement ist einbezogen, keine Funktionsunterbrechung	zusätzliches Auflegen eines Referenzgewichtes bei Wägung
4	Verwendung eines Testsignals, Varia- tion interner Grö- ßen	Aktor bzw. Sensorelement ist meist einbezogen, oft aber Funktionsunterbrechung	periodische Reduktion des Feldstroms beim MID und Aufnahme der resultierenden, mittleren Abweichung ΔQ des Messwertes, die unter einem Grenzwert bleiben [5] Aufnahme von Sprungantworten bei kurzzeitigen kleinen Ventilhüben z. B. zur Erkennung von Reibung [6]
5	Simulation einer Referenzgröße	einfach, aber nur auf Kompensa- tionsverfahren anwendbar	Drucksensor mit Kraftkompensation wird mit Testsignal beaufschlagt [12]
6	Zusätzliche redun- dante Sensoren im Feldgerät	viele Überwachungsmöglich- keiten, gerade bei diversitären Sensoren	Kombination von Schwimmer und geführter Mikrowelle [7]
7	Zusätzliche nicht- redundante Senso- ren im Feldgerät	keine Funktionsunterbrechung, Fehler lokalisierbar, aber nur spe- zielle Fehler erkennbar, zusätzli- che Sensoren bringen neue Feh- lermöglichkeiten	Bei dem kapazitiven Einkammer-Differenzdruck- aufnehmer können die Kapazitäten in einen ana- lytischen Temperaturwert umgerechnet werden. Ein zusätzlicher Sensor misst die Temperatur. Der Vergleich beider Werte erkennt Membranzer- störung [8]
8	Überwachung in- terner Größen	keine Funktionsunterbrechung, häufige Anwendung	Strom zwischen Elektrode und Bezugspotenzial wird bei der kapazitiven Standmessung auf ohmschen Anteil geprüft; gibt Hinweis auf leitfähige Anhaftungen [9]
9a	Vor- und Erfah- rungswissen über das Messsignal	keine Funktionsunterbrechung, einfach, häufige Anwendung	Überwachung der Varianz des Messsignals, bedingt durch die Taumelbewegung bei Schwebekörper-Durchflussmessern zur BlockadeErkennung [10]
9b	Beobachtung des Betriebsverhaltens	keine Prozessbeeinflussung, Diagnosetiefe fraglich	Überwachung von Regelabweichung, Anstiegs- zeit und Überschwingen

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	DiplIng. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

Darstellung

Allgemeines

Die Darstellung der NAMUR-Statussignale soll, je nach Einsatzfall, nach den folgenden Darstellungsarten vorgenommen werden.

Grafische Darstellung der Statussignale

Im Feldgerätebedienfeld, PLS-Fließbild, PLS-Faceplate, Engineering-Konsole, Feldgerätemanagement (EDDL, FDT/DTM, FDI), AMS-Tool ist die Darstellung nach Tabelle 4 zu wählen.

Tabelle 4 Grafische Darstellung der Statussignale

Statussignal/	Farben/	Formen/	Farben und Formen/
Status signal	Colours	Forms	Colours and forms
Ausfall/	oder/	oder/	×
Failure	or	or	
Funktionskontrolle/	oder/	oder/	The state of the s
Check function	or	or	
Außerhalb der Spezifikation/ out of specification	oder/ or	oder/ or	<u>?</u>
Wartungsbedarf/	oder/	oder/	\(\sqrt{ \chi} \)
Maintenance required	or	or	

Soll die Aktivierung der Diagnosefunktion dargestellt werden, so geschieht das mit der Symbolik nach Tabelle 5.

University of Applied Siences

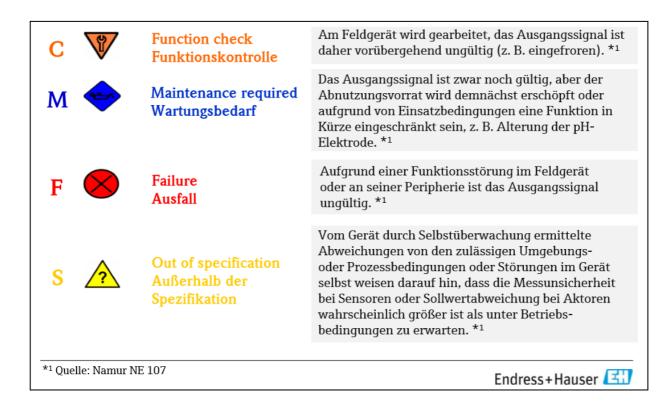

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

Tabelle 5 Symbolik zur Darstellung der Aktivierung der Diagnosefunktion

Diagnosestatus/ Diagnose status	Farben/ Colours		Formen/ Forms		Farben und Formen/ Colours and forms
Diagnose aktiv/ Diagnosis active		oder/ or	✓	oder/ or	✓
Diagnose passiv/ Diagnosis passive		oder/ or		oder/ or	

In der freien Grafik (z.B: Prozessfließbild des PLS) soll der Zustand einer Messstelle erkennbar sein. Auf die Darstellung von detaillierten Diagnoseinformationen sollte dabei verzichtet werden. Ungültige Werte (z. B. infolge ausgefallener Aktualisierung) sind zu kennzeichnen, z. B. durch Anzeige von "??", "xxx" oder "***".

Statussignale liefern Aussagen über den Zustand und die Verlässlichkeit des Gerätes. Folgende Signale sind festgelegt:

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

Allgemeine Fehler und Fehlerzustände von Feldgeräten

Fehler in der Elektronik

Fehler im Anregungsteil des Sensorelements Fehler in der Auswerteelektronik Fehler in der internen Energieversorgung

Fehler am Sensor- oder Aktorelement

Fehler im Sensorelement Fehler im Aktorelement

Einbau-/Inbetriebnahmefehler Installation

Einbaufehler (z. B. Totraum)

Parametrierfehler

Signalweg unterbrochen oder kurzgeschlossen

Bürde zu hoch

verpolter Anschluss der Hilfsenergie maximale Leitungslänge überschritten

Fehler infolge Prozesseinfluss

Korrosion / Abrasion an medienberührenden Teilen Verschmutzung des Sensorelements fehlendes oder unzureichendes Hilfsmedium Nutzungsvorrat erschöpft durch Betrieb Nutzungsvorrat erschöpft durch Verschleiß Fehler in der Peripherie

Fehler durch Nichteinhalten der spezifizierten Betriebsbedingungen

unzulässig hohe elektromagnetische Störung unzulässige Mediumtemperatur unzulässige Umgebungstemperatur unzulässige Vibration oder Stoßbelastung unzulässiger Bereich der Hilfsenergien fehlendes oder unzulässiges Hilfsmedium unzulässige Temperaturschockbelastung

Sonstige Fehler

unzulässige Messabweichung (z. B. aus interner Referenz)

Feuchtigkeit im Elektronikraum Messstoff im Elektronikraum mechanische Beschädigung

Kommunikation gestört (z. B. Wiederholrate zu hoch)

Fremdstoff im Elektronikraum

Quelle: Namur NE 107

Endress+Hauser 4

Darstellung der Statussignale mit LED

Die Darstellung der Status Signale mit LED erfolgt gemäß Tabelle 6. Die Signalisierung sollte eindeutig sein und auch ohne Handbuch verständlich. So sind z.B. unterschiedliche Blinkfrequenzen oder Helligkeitsstufen zu vermeiden. Für Einund Ausgangssignalisierung gelten sinngemäß die gleichen Vorgaben wie für das Gerät.

Es muss berücksichtigt werden, dass insbesondere bei Ex i Geräten der Stromverbrauch kritisch ist und daher eine Reduzierung der LEDs wünschenswert ist, auch verschiedene Spannungsebenen für verschiedenfarbige LEDs können den Schaltungsaufwand erhöhen. Daher werden verschiedene Statussignale nach Tabelle 6 am Gerät mit einer Farbe dargestellt.

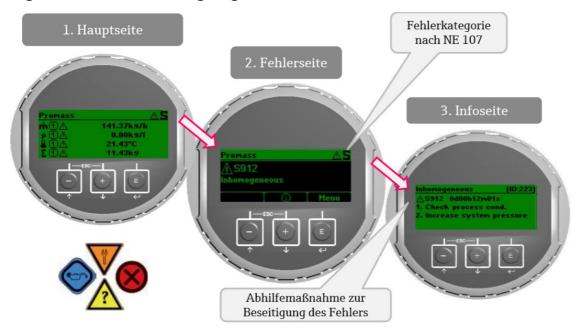
University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

Der Wartungsbedarf wird grün blinkend dargestellt, die Messwerte, Signale sind gültig. Alternativ kann auch eine blaue LED zur Anzeige verwendet werden.

Bei den Statusanzeigen "Außerhalb der Spezifikation" sowie "Funktionskontrolle" ist ein Eingriff des Wartungspersonals nötig oder bereits im Gange, so dass eine weitere Unterscheidung am Gerät nicht nötig ist. In beiden Fällen ist das Signal möglicherweise ungültig. Daher werden die beiden Statussignale am Gerät mit der rot blinkenden LED zusammengefasst. Der Status "Ausfall" wird durch eine rote LED angezeigt.

Tabelle 6 Darstellung der Statussignale mit LED


Status Signal/Status signal	LED	LED alternative/alternatively
Ausfall/ Failure	rot/red	
Funktionskontrolle/Check function	rot blinkend/ red blinking	
Außerhalb der Spezifikation/out of specification	rot blinkend/ red blinking	
Wartungsbedarf/Maintenance required	grün blinkend/ green blinking	blau/blue
Power ^a (Versorgung und Betrieb/supply and operation)	grün/green	
Schaltkontakt ^a /Switching contact ^a	gelb/yellow	
a kein Status Signal, nur zusätzliche Geräteinformation für Geräte mit binärem Ausgang/ no status signal, additional device information for devices with binary output		

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

Diagnose / Fehlermeldungen gemäß NE 107

Endress+Hauser 4

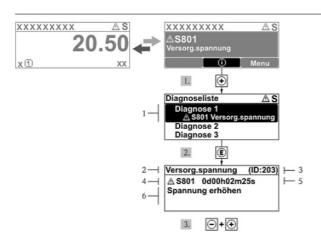
Eintrag in Diagnose- und Ereignislogbuch

Aktuelle Diagnoseereignisse mit Diagnoseinformationen

	Symbol	Bedeutung	
Ausgabe nimmt definierte Fehler- zustände ein. Hintergrundbeleuchtu wechselt auf rot. Diagnosemeldung		zustände ein. Hintergrundbeleuchtung	
	\triangle	Warnung. Messung wird fortgesetzt. Ausgabe wir nicht beeinflusst. Diagnosemeldung wird generiert.	

Historie aufgetretener Ereignisse in chronologischer Reihenfolge

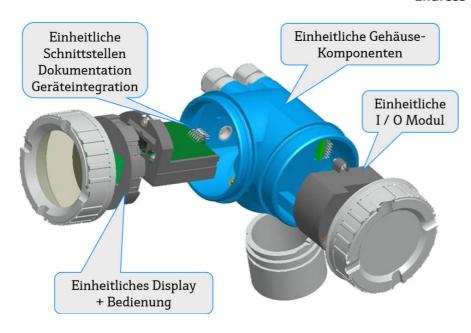
Symbol	Bedeutung
€	Ereignis beginnt.
(-)	Ereignis endet.


Endress+Hauser 🔣

University of Applied Siences

Ingenieurwesen II	AUT, Feldger. u. industrielle Komm.	Dipl.–Ing. (FH) M. Trier
Elektrotechnik (BEII)	Grundlagen 1.4	07. Januar 2018

Einheitliche Darstellung im Display und Bedientool



Instrument health status 3

- Abhilfemaßnahmen sind bei Diagnoseereignissen direkt verfügbar
- Fehleranalyse und Behebungsmaßnahmen sind ohne zusätzliche Dokumentation direkt abrufbar
- Alle Diagnosemeldungen sind nach NE 107 kategorisiert
- Im Ereignislogbuch werden alle Meldungen mit Zeitstempelung aufgezeichnet und unverlierbar gespeichert
- Die Darstellung ist einheitlich für Gerätedisplay und Bediensoftware (Bsp.: Fieldcare)

Endress+Hauser 🔠

